
Eur. Phys. J. D 6, 171–177 (1999) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. We have developed simple wave functions for two- and three-electron atoms and ions, which
have the correct structure when one of the electrons is far away, or when two of the particles are close to
each other. These essentially parameter-free wave functions allow us to deduce fairly accurate values for
the energies, 〈r2n〉, for multipolar polarizabilities of two-electron atoms and ions, and for the coefficients
of the asymptotic density.

PACS. 31.15.-p Calculations and mathematical techniques in atomic and molecular physics (excluding
electron correlation calculations) – 31.15.Ar Ab initio calculations

1 Introduction

Development of simple, analytic wave functions is an im-
portant but difficult problem in atomic physics. Generally
one uses a basis of convenient, orthonormal state vectors
with variational coefficients. The variational approach has
achieved a very high level of accuracy in the calculation
of He energy levels, and also of Li, in some cases better
than 1 part in 1015. The calculations for He were based on
the use of logarithmic terms [1–3] in the basis, or doubled
basis sets [4]. One also has very accurate values for some
excited states [5] and for Li ground state [6]. More recently,
it has been emphasized [7–11] that wave functions which
incorporate some properties of the exact wave functions
provide accurate and useful representations of the energy
eigenstates of two-electron systems. These considerations
need to be extended to systems with more than two elec-
trons. It may also be mentioned that the general analytical
structure of the wave functions is an important guideline
in the choice of the basis functions for the variational cal-
culations. A basis chosen with the correct analytic struc-
ture of the wave functions has been shown [12] to be very
efficient in giving variational energies of a very high level
of accuracy.

Here we discuss some useful, local properties of wave
functions and develop simple but fairly accurate wave
functions for two-electron atoms and ions. We then ex-
tend these ideas to develop accurate wave functions for
the ground state of three-electron atoms and ions. These
wave functions allow us to deduce some important prop-
erties of the systems, such as asymptotic densities, expec-
tation values of 〈r2〉, multipolar polarizabilities, etc. We
will use atomic units unless stated otherwise.
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2 Some local properties

Here we briefly discuss some local properties of eigenfunc-
tions of energy. These properties will help us in developing
reliable wave functions for the eigenstates.

2.1 Asymptotic wave functions

The Hamiltonian for N -electron atoms and ions is

H(N) =
N∑
i=1

1

2
p2
i −

N∑
i=1

Z

ri
+

N∑
i>j

1

rij
, (2.1)

where rij =| ri − rj |. The energy eigenfunction

HN ψ(ri) = E ψ(ri) (2.2)

then has the asymptotic behaviour [13,14]

ψ(ri)
r1→∞−→ ψ

(N−1)
0 (r2, ..., rN ) f0(r1) , (2.3)

f0(r1) = e−ar1 ru1

[
1 +

(`− u)(`+ u+ 1)

2ar1
+ . . .

]
×Ym` (θ1, φ1) ,

a = [ 2(E
(N−1)
0 −E) ]1/2 ,

u =
QN−1

a
− 1 ,

where ψ
(N−1)
0 (r2, ..., rN ) is the ground-state wave function

of the (N−1)-electron system with energy E
(N−1)
0 , QN−1

is the charge seen by the electron 1 when it is far away,
and ` is the angular-momentum quantum number of elec-
tron 1 when it is far away. It is important to note that the
asymptotic behaviour depends only on the separation en-

ergy E
(N−1)
0 −E of the last electron and the charge QN−1

of the core seen by this electron when it is far away.
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2.2 Wave functions for r1 → 0

When electron 1 is close to the nucleus, the Schroedinger
equation can be written in the form(

−
1

2
∇2

1 −
Z

r1

)
ψ(N) = O (1) , (2.4)

where the terms on the right-hand-side are finite order
terms for r1 → 0. Keeping other variables fixed, we expand
ψ(N) in terms of spherical harmonics,

ψ(N) =
∑
`,m

G`m(r1)Ym` (θ1, φ1) (2.5)

and project out the `,m state to get

d2

dr2
1

[ r1G`m(r1) ] −
`(`+ 1)

r1
G`m(r1) + 2Z G`m(r1)

−→ O (r`+1
1 ) for r1 → 0. (2.6)

Substituting

G`m(r1) = r`1 ( a0 + a1r1 + ...) (2.7)

into equation (2.6), one obtains

a1 = −
Z

`+ 1
a0. (2.8)

One usually applies this condition to the dominant s-wave
terms for which

a1(` = 0) = −Za0(` = 0) . (2.9)

2.3 Wave function for r12 → 0

When electrons 1 and 2 are close to each other, we go
to the centre-of-mass frame of electrons 1 and 2 whose
reduced mass is 1/2, so that(

−∇2
12 +

1

r12

)
ψ(N) = O(1) . (2.10)

We again expand in terms of spherical harmonics,

ψ(N) =
∑
`,m

G`m(r12)Y m` (θ12, φ12) (2.11)

and project out the `,m state to get

d2

dr2
12

[ r12G`m(r12) ]−
`(`+ 1)

r12
G`m(r12)−G`m(r12)

−→ O (r`+1
12 ) for r12 → 0. (2.12)

Substituting

G`m(r12) = r`12 ( b0 + b1r12 + ...) (2.13)

into equation (2.12) one obtains

b1 =
1

2(`+ 1)
b0 . (2.14)

When the two electrons are in the singlet state they are in
relative ` even states and when they are in the triplet state,
they are in relative ` odd states. Therefore the leading
contribution for r12 → 0 is from the ` = 0 term for the
singlet states, and from the ` = 1 term for the triplet
states, so that one has for r12 → 0 ,

ψ(N) −→ b0

(
1 +

1

2
r12

)
for singlet

−→ b0 r12

(
1 +

1

4
r12

)
for triplet . (2.15)

These are described as cusp conditions.

3 Two-electron wave functions

For a two-electron atom or ion with nuclear charge Z, the
Schroedinger equation is

H ψ = E ψ ,

H =
1

2
( p2

1 + p2
2 )− Z

(
1

r1
+

1

r2

)
+

1

r12
. (3.1)

We develop model wave functions for different states which
incorporate the local properties we have discussed.

3.1 Ground-state wave function

We propose a wave function of the form

ψ(r1, r2) =

A [ e−Zr1 e−ar2 g(r2) + e−Zr2 e−ar1 g(r1) ] f(r12) , (3.2)

where A is the normalization constant. We take

a = [ 2(−Z2/2−E) ]1/2 , (3.3)

with E being the total energy of the system, to ensure
the correct asymptotic, exponential behaviour in equation
(2.3). The energy E is determined iteratively by calculat-
ing the average value of H,

E =
〈ψ | H | ψ〉

〈ψ | ψ〉
. (3.4)

The factor g(ri) is introduced to incorporate the required
threshold behaviour in equation (2.9) and in the interme-
diate −r region. It may be noted that for He and positive
ions Li+, etc., the exponent a is large, and the power u
of r1 in equation (2.3) is small and may be left out. For
H−, a is quite small and u is −1. Therefore we consider
different g(ri) for the two cases.
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3.2 Behaviour for ri → 0

For He and the positive ions, we take

g(ri) = 1 + c e−Z
′ri , Z ′ = Z − 5/16. (3.5)

The choice of Z ′ in the exponent ensures that when the
electron is outside the remaining core, which in the varia-
tional description implies ri > 1/Z ′, the function

g̃(ri) = e−arig(ri)

= e−ari
(
1 + ce−Z

′ri
)

(3.6)

is dominated by the leading asymptotic exponential term
e−ari . The constant c is determined by the coalescence
condition in equation (2.9) which implies

(1 + c)a+ cZ ′

1 + c
= Z , (3.7)

or

c =
(Z − a)

Z ′ + a− Z
. (3.8)

For the negative ion H−, we take

g(ri) = (1− e−bri)/ri , (3.9)

which has the required asymptotic power r−1
i in equation

(2.3). For ensuring the correct behaviour in equation (2.9)
for ri → 0, we require

e−ari(1− e−bri)/ri → b(1− Zri) for ri → 0 , (3.10)

which leads to the relation

b = 2 (Z − a) , Z = 1 . (3.11)

This determines g(ri) in equation (3.9) for negative ions.

3.3 Behaviour for r12 → 0

It has been found [15] that

f(r12) = 1−
1

1 + 2λ
e−λr12 (3.12)

provides a good description of the correlation between the
two electrons. It incorporates the cusp condition in equa-
tion (2.15):

f(r12) =
2λ

1 + 2λ

(
1 +

1

2
r12

)
for r12 → 0. (3.13)

Furthermore, the parameter λ was estimated [15] from a
perturbative approach to be well represented by

λ =
5Z

12
−

1

3
. (3.14)

3.4 Results for the ground state

We now have the wave function in equation (3.2) for the
ground state. The function g(ri) is given in equation (3.5)
for He and positive ions, with the parameter c given in
equation (3.8), and in equation (3.9) for H− with the pa-
rameter b determined by equation (3.11), and the correla-
tion function f(r12) is given by equation (3.12) along with
λ as quoted in equation (3.14). The parameter a which
depends on E, and the energy E taken to be the average
energy,

E〈ψ | ψ〉=〈ψ | −
1

2
(∇2

1 +∇2
2)− Z

(
1

r1
+

1

r2

)
+

1

r12
| ψ〉 ,

(3.15)

are determined iteratively. There are no free parameters
in the wave functions.

The wave function in equation (3.2) for He and positive
ions with g(ri) given in equation (3.5) is of the form

ψ =
∑

Ai e
(−uir1−vir2−wir12) , (3.16)

so that

〈ψ | ψ〉 =
∑
i,j

AiAj

×

∫
d3r1 d3r2 e

[−(ui+uj)r1−(vi+vj)r2−(wi+wj)r12] . (3.17)

The expectation value of H is given by

〈ψ | H | ψ〉 =
∑
i,j

AiAj

×

∫
d3r1 d3r2 e

[−(ui+uj)r1−(vi+vj)r2−(wi+wj)r12]

×

[
−u2

i − w
2
i +

2(ui − Z)

r1
+

(2wi + 1)

r12

−uiwi
(r2

1 − r
2
2 + r2

12)

r1r12

]
. (3.18)

These expressions involve integrals of the type

In1,n2,n3(u, v, w) =∫
d3r1 d3r2 r

n1
1 rn2

2 rn3
3 e (−ur1−vr2−wr3) =

(−d/du)n1+1(−d/dv)n2+1(−d/dw)n3+1

×
16π2

(u+ v)(v + w)(w + u)
. (3.19)

This allows us to obtain the energies in a closed analytic
form. The energy expressions for the negative ion H− wave
function in equation (3.2) with g(ri) given in equation
(3.9) are reduced to a similar form by using the identity

e−ar − e−br

r
=

∫ b

a

e−arda . (3.20)
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Table 1. Parameter c, normalization constant A for the wave function in equation (3.2), −Etot, ratio −2T/V of expectation
values of twice the kinetic energy and potential energy, expectation values of r2, r4 for the ground state of two-electron atoms
and ions, and the essentially exact variational energies from reference [16].

c A −Etot −Etot(exact) −2T/V 〈r2〉 〈r4〉

H− - 0.1992 0.52533 0.52775 1.011 25.33 1846
He 0.6376 0.8489 2.90175 2.90372 0.992 2.388 7.912
Li+ 0.3148 3.1383 7.27677 7.27991 0.992 0.889 1.028
Be2+ 0.2092 8.590 13.6517 13.65557 0.992 0.462 0.273
B3+ 0.1567 17.43 22.0266 22.03097 0.994 0.283 0.102
C4+ 0.1253 30.85 32.4015 32.40625 0.994 0.191 0.0460
N5+ 0.1043 49.81 44.7764 44.78146 0.996 0.137 0.0238
O6+ 0.0891 75.27 59.1514 59.15660 0.996 0.104 0.0135
F7+ 0.0782 108.2 75.5264 75.53171 0.996 8.10 × 10−2 8.24 × 10−3

Ne8+ 0.0695 149.5 93.9013 93.90681 0.996 6.50 × 10−2 5.50 × 10−3

The energies are again available in a closed analytic form.
The wave functions also allow us to calculate the ex-

pectation values 〈r2〉, 〈r4〉, etc. The expectation value 〈r2〉
is related to the diamagnetic susceptibility χ,

χ = −
1

6
〈r2〉 . (3.21)

The results are given in Table 1. They are in fairly
good agreement with the results of elaborate calculations.
For example, with our zero-parameter wave function, we
get E = −2.90175, −7.2768, −13.6517 for the total ener-
gies of He, Li+, Be2+, which may be compared with the
essentially exact values of −2.90372, −7.2799, −13.6556,
respectively, obtained from variational calculations [16].
For H−, we get E = −0.5253 from the parameter-free
wave function, to be compared with the value of −0.5276
from the variational calculations [16]. The expectation val-
ues for 〈rn〉 are also quite good. Our values of 〈r2〉 for
He and Li+ are 2.39 and 0.889, and the value of 〈r4〉 for
He is 7.91, to be compared with the corresponding values
of 2.39, 0.892, and 7.93, respectively from the accurate
variational wave functions [16]. Since our wave functions
incorporate the correct asymptotic behaviour, the results
for higher values of n are particularly reliable. Apart from
the accuracy of the predicted energies, one can judge the
quality of the model wave function in terms of the virial
theorem. For the exact wave functions the virial theorem
requires that the ratio −2〈T 〉/〈V 〉 should be 1. As can be
observed from the results in Table 1, our values for this
ratio are quite close to 1.

3.5 Wave functions for excited states

We can also write simple, useful expressions for lowest
energy wave functions with L = 1, 2, ... incorporating the
threshold and cusp conditions in equations (2.9, 2.14), and
the asymptotic behaviour. The suggested wave functions
are

ψ(r1, r2) = A [ e−Zr1 e−ar2 r`2 P`(cos θ2)

± e−Zr2 e−ar1 r`1 P`(cos θ1) ] f±(r12) , (3.22)

Table 2. Variational values of parameter λ, normalization con-
stant A, energies predicted, and experimental energies for some
excited states of He and Li+.

state λ A −Etot −Eexpt

He 2 1P 0.80 0.1130 2.12336 2.12390
2 3P 0.90 0.1197 2.13042 2.13324
3 1D 0.50 2.855 × 10−3 2.05560 2.05566
3 3D 0.40 2.895 × 10−3 2.05562 2.05568

Li
+

2 1P 1.35 1.1669 4.9922 4.9935
2 3P 1.50 1.2444 5.0220 5.0279

where the + is for singlet states and − is for triplet states.
For the correlation functions we take

f+(r12) = 1−
1

1 + 2λ+
e−λ+r12 singlet states ,

f−(r12) = 1−
1

1 + 4λ−
e−λ−r12 triplet states , (3.23)

which satisfy equation (2.14) for ` = 0, 1 respectively, for
r12 → 0. The constant a in equation (3.22) is determined
from the asymptotic condition in equation (2.3),

a = [ 2(−Z2/2−E) ]1/2 , (3.24)

where E is determined iteratively to give

E =
〈ψ | H | ψ〉

〈ψ | ψ〉
, (3.25)

with the Hamiltonian in equation (3.1). The remain-
ing parameter λ± are determined variationally. These 1-
parameter results are given in Table 2, and are in good
agreement with the experimental values of the energies.
For example, our predicted values for the energy of the
singlet 2 1P state of He is −2.1234 which is to be com-
pared with the experimental value of −2.1239.
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Table 3. Values of D1, D2 for the perturbed wave function in equation (3.30) and the calculated values of the polarizabilities
α` and hyperpolarizabilities B for H−, He, Li+, Be++ along with the results from other calculations.

H− He Li+ Be++

D1(` = 1) 2.128 0.3302 0.1972 0.1411
D2(` = 1) 0.37 0.979 0.407 0.220
D1(` = 2) 1.419 0.2287 0.1346 0.0957
D2(` = 2) -0.03 0.544 0.239 0.138
D1(` = 3) 1.064 0.1750 0.1022 0.0724
D2(` = 3) -0.07 0.336 0.165 0.0970
α1 220 1.370 0.191 0.0517
α1 (other) (211-215)a (1.383)b (0.192)c (0.051)d
α2 1.08 × 104 2.407 0.109 0.0146
α2 (other) − (2.443)b (0.111)d (0.0149)d
α3 1.38 × 106 10.60 0.154 0.0104
−B 7.54 × 105 7.75 0.114 7.52 × 10−3

−B (other) − (7.333)e (0.121)e (8.39× 10−3)e

a: Reference [19], b: reference [17], c: reference [18], d: reference [8], e: reference [20].

3.6 Multipolar polarizabilities and hyperpolarizabilities

Our wave functions can also be used to calculate multipo-
lar polarizabilities and hyperpolarizabilities. In the pres-
ence of a perturbative multipolar potential, the perturba-
tion to the wave function, δψ`, satisfies the inhomogeneous
equation

(H − E) δψ` = [ r`1 P`(cos θ1) + r`2 P`(cos θ2) ]ψ ,
(3.26)

where H is the unperturbed Hamiltonian given in equa-
tion (3.1), and ψ is the unperturbed wave function given
in equation (3.2). The multipolar polarizability α` is given
by

α` = 2 〈ψ | [ r`1 P`(cos θ1) + r`2 P`(cos θ2) ] | δψ`〉.
(3.27)

For obtaining a good representation for δψ`, we observe
that equation (3.26) implies the asymptotic behaviour,

δψ`
r1→∞−→ D1 r

`+1−`0
1 P`(cos θ1)Ae−ar1−Zr2 , (3.28)

D1 =
1

a(`+ 2− `0 −Q1/a)
, Q1 = Z − 1 , (3.29)

where A is the normalization constant of the unperturbed
wave function in equation (3.2), and `0 is equal to 0 for He
and positive ions, and is equal to 1 for H−. We therefore
take

δψ` = [ (D1r1 + D2) r`−`01 P`(cos θ1)Ae−ar1−Zr2

+(D1r2 + D2) r`−`02 P`(cos θ2)Ae−ar2−Zr1 ] f(r12) , (3.30)

with f(r12) being the correlation function given in equa-
tion (3.12). The constant D2 is determined by requiring
that this function satisfies the equation

〈δψ` | (H − E) | δψ`〉 =

〈δψ` | [ r`1 P`(cos θ1) + r`2 P`(cos θ2) ] | ψ〉 (3.31)

obtained by taking the scalar product of the relation in
equation (3.26) with δψ`. The values of the parameter
D1, D2, and the values of the polarizabilities are given in
Table 3. The polarizabilities are generally in good agree-
ment with the results of other calculations [8,17,18]. Since
the polarizabilities of H− are very sensitive to the input
separation energy of the last electron, we have taken the
experimental value of 0.0276 as the input separation en-
ergy for H−. For this input energy the normalisation con-
stant A is 0.2125 and the predicted value of the dipolar
polarizability of H− is 220 which may be compared with
the value of 211-215 from earlier calculations [19].

The wave functions δψ` in equation (3.30) can be used
for calculating hyperpolarizability B defined as

B = −2T121 − 4T112 , (3.32)

where

T121 = 〈δψ1 | [ r2
1 P2(cos θ1) + r2

2 P2(cos θ2) ] | δψ1〉
(3.33)

T112 = 〈δψ1 | [ r1 P1(cos θ1) + r2 P1(cos θ2) ] | δψ2〉 .
(3.34)

The predicted values of B are given in Table 3. The value
of 7.696 for He is close to the value of 7.327 from other
calculations [20]. Since our wave functions have the correct
asymptotic behaviour, we expect that our predicted values
are quite reliable.

4 Three-electron wave functions

The general approach based on the local properties of en-
ergy eigenfunctions can be extended to develop wave func-
tions of atoms and ions with three electrons.

We consider a wave function

ψ(1, 2, 3) = G [φ(1, 2)η(3)

+φ(2, 3)η(1) + φ(3, 1)η(2) ]F (1, 2, 3) . (4.1)
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Here, φ(i, j) are the two-electron wave functions we devel-
oped earlier (correlation part is in F ),

φ(i, j) =
2∑
k=1

ck[ e−Zrie−akrj + e−Zrje−akri ]

×[α(i)β(j) − β(i)α(j) ]/21/2 , (4.2)

where

a1 = [2(−Z2/2−E2)]1/2 , (4.3)

E2 being the ground-state energy of the two-electron ion,

c1 = 1 , (4.4)

a2 = a1 + Z ′, Z ′ = Z − 5/16 , (4.5)

c2 =
(Z − a1)

Z ′ + a1 − Z
, (4.6)

as required by the threshold behaviour in equation (3.8),
and α and β are the spin-up and spin-down state vectors
of the electrons. The function η is taken to be

η(i) = r2
i

(
ri +

d

u− 2

)u−2

e−ariα(i) . (4.7)

Imposing the asymptotic behaviour in equation (2.3), we
get

a = [ 2(E2 −E) ]1/2 ,

u =
Z − 2

a
− 1 , (4.8)

d = −
u(u+ 1)

2a
.

Finally, the correlation function F is taken to be

F (1, 2, 3) = f(1, 2) f(2, 3) f(3, 1) ,

f(i, j) = 1−
1

1 + 2λ
e−λrij , (4.9)

λ =
5Z

12
−

1

3
,

where f(i, j) is the two-electron correlation function in
equation (3.12) with λ given in equation (3.14). It must
be emphasized that there are no free parameters in the
wave function, but the wave function satisfies the correct
exchange properties, the correct asymptotic properties for
ri →∞ and the correct threshold properties for ri → 0 or
rij → 0.

It is straightforward to calculate the expectation value
of the energy

E =
〈ψ | T + V | ψ〉

〈ψ | ψ〉
. (4.10)

Table 4. Input values of −E2, ai, ci of two-electron wave func-
tions in equation (4.2), input values of the ionisation energy
which is nearly equal to the output values of the ionisation
energy, normalization constant G, average value of r2, and the
coefficient Nc20 of the asymptotic radial density in equation
(4.12), for Li, Be+, B++, along with the accurate variational
values −Etot

var from a: reference [6], b: reference [21].

Li Be+ B++

−E2 7.277 13.652 22.0273
a1 2.357 3.3622 4.3652
a2 4.619 6.3123 8.0056
c1 1 1 1
c2 0.3974 0.2758 0.2112
Eion

in (eV ) 5.3912 18.21 37.93
Eion

out(eV ) 5.334 18.16 37.86
−Etot

out 7.4732 14.320 23.4193
−Etot

var (7.47806)a (14.3247)b (23.4245)b
G 0.4303 3.828 17.86
〈r2〉 17.35 6.45 3.32
Nc20 0.660 8.04 42.0

The evaluation of the kinetic energy is simplified by using
the identity [9]

∫
(φf)∇2 (φf)dτ =

∫
[f2 φ∇2 φ− φ2 (∇f) · (∇f)] dτ

(4.11)

which follows from simplifying the left-hand side and in-
tegrating by parts.

The integrations are carried out numerically. The cal-
culated values of the parameters and the predicted values
of the energy for Li, Be+, B++ are given in Table 4. The
energies are generally in good agreement with the accurate
variational calculations [6,21]. For Li, the predicted values
are−7.473±0.0015 a.u. for the total energy, 5.33±0.04 eV
for the ionisation energy with the uncertainties being due
to estimates of errors in numerical integrations, and the
corresponding variational values [6] are −7.4781 a.u. and
5.39 eV, respectively. The predictions for Be+ and B++

are of similar quality. Other quantities of importance are
the normalization constant G, and the coefficient Nc20 of
the asymptotic radial density

ρr(r)
r→∞
−→ Nc20 r

2(u+1) e−2ar . (4.12)

We have also given the calculated values of 〈r2〉 which are
related to the diamagnetic susceptibility χ as in equation
(3.21). Our value of 17.4 for 〈r2〉 of Li is fairly close to
the corresponding value of 18.355 from the accurate vari-
ational wave functions [6]. Since our wave functions have
the correct asymptotic behaviour, we expect the predicted
values of the coefficient Nc20 of the asymptotic radial den-
sity, and of 〈r2〉 to be fairly reliable.
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5 Conclusions

Wave functions of the atoms and ions have simple struc-
tures when one of the electrons is far away, or when it
is close to the nucleus, or when two electrons are close
to each other. These properties provide important guide-
lines in the construction of simple, analytic wave functions
of atoms and ions. We have constructed relatively simple
wave functions satisfying these properties for two-electron
atoms and ions. These wave functions without any free pa-
rameters give fairly accurate values for the energies and
for the average values 〈r2n〉. We have also presented a sim-
ple method based on asymptotic behaviour of perturbed
wave functions, for obtaining accurate values for the mul-
tipolar polarizabilities and hyperpolarizabilities. The two-
electron wave functions are then used to construct three-
electron wave functions, incorporating the asymptotic and
threshold conditions. These three-electron wave functions
provide fairly accurate values for the energies, the aver-
age values 〈r2n〉, and for the coefficients of asymptotic
densities. The simplicity of the wave functions and the ac-
curacy of their predictions demonstrate the importance of
the asymptotic and threshold behaviours in the develop-
ment of the wave functions.
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